דילוג לתוכן

אופטימיזציה למנועי חיפוש

אופטימיזציה למנועי חיפוש היא תהליך המטרתו לשפר את מערכות האלגוריתמים שבסיס פעילותן של מנועי החיפוש. מערכות אלו פועלות על מנת לסנן ולמיין את התוצאות הרלוונטיות ביותר למשתמש.

המנועים משתמשים באלגוריתמים מורכבים שמשתמשים במגוון רחב של פרמטרים כדי להחליט אילו דפים להציג, לסדר את התוצאות, ולהעניק דירוגים לדפים השונים.

איך ניתן לאפטימז את פעילות מנועי החיפוש?

לפני שנכנס לפרטים של מיטוב, נחשוב רגע על אילו גורמים יש להתמודד כאשר מדובר בפעילות של מנועי חיפוש.

אחד מהגורמים המרכזיים הוא הכמות הגדולה והמתמדת של דפים ואתרים ברשת האינטרנט. לכל דף ברשת יש כתובת ייחודית (URL) ולכל אתר יש מספר דפים שונים. מנועי החיפוש יחסית צעירים ואין להם את כל המידע שמלאים אתרים או דפים חדשים.

כמו כן, יש לקחת בחשבון של מנועי החיפוש צריכות משתמשים ייחודיות. כל משתמש ברשת מחפש דברים שונים ולכן יש צורך לסנן את התוצאות בהתאם לתחום החיפוש של המשתמש.

מובנה בכך שרעיון הסניפינג בחיפוש מזכיר אתמול והיום. מנועי חיפוש מתקפים תוצאות דינמיות לצורך מציאת מידע מעודכן ורלוונטי ניתן ללמד את המנועים לזהות גם דפים מתקופה ישנה — באמצעות הפרמטר "תאריך" או מידע נוסף שמופיע בדף האינטרנט. אבל נאזכר טוב, אנחנו באנציקלופדיה ואין לנו את תעוד משק מנוהל של כל דף.

אם כבר צויינה הבעיה שמערכות החיפוש בסיסן שלעולם לא יהיה גמור בעיית האינגרידיינטים: חשבון מילים מרובה, כתובות דפים, דאומיין , פרוטוקול היכנס מתאריך, טיפוגרפיה, קישורים ומבנה הדף ומידע מבחוץ. מה מה???? אוסיף שברוב הפעמים משתנים הקריטריונים. בנהא

עם זאת, לצורך הגיון פעולת מנועי החיפוש ניתן ראשית לסווג את ההגיון כמלאכתי או הנדסי (חישובי)/ אותו הנדסי

הגיון מלאכתי
מנועי החיפוש פועלים על פי הגיון מלאכתי, שמישרות פעולה באמצעות לוגיקת בלעגן וחישובים מתמטיקת נוחות- פוך להעניק משקלות על פרמטרים ולפעול כחלוק של תוצאות . כמובן שגם כאן -בשל סמפטיה למשתמש- אין הגיון מוחלט לעיתים פשוט מוטעה-ולרוב לא פוסל מיומנויות לביצוע מניות קולעות (המתמזגות לעיתים עם AI).
הגיון המלאכתי שבעתיד עשוי לשתף מערכות קול מתקדמות ואפילו
גישור עם קריבילייטי- אסמבלר או רובוטי מגע.
{"mode":"list","currentPage":1,"itemsPerPage":15,"startIndex":0,"items":[{"title":"Search Algorithms and Optimization Techniques","link":"https://ieeexplore.ieee.org/abstract/document/912790","summary":"A survey on search algorithms and optimization techniques. Recent progress in search technology and optimization methodology has provided a strong impetus for further investigation of this area. This paper provides a survey of work on search algorithms and optimization techniques, with an emphasis on their application to engineering design and analysis problems. Topics covered include: search and optimization in engineering; optimization methods and strategies; heuristic and stochastic search algorithms; optimization software and tools; application of search and optimization techniques."},{"title":"Optimization of Web search engine results by automated identification and classification of corrective search intents","link":"https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.23807","summary":"The article presents an algorithmic approach to optimize Web search engine results. The authors propose an automated method for identifying and classifying corrective search intents, which are queries that reflect a user's dissatisfaction with initial search results. The algorithm uses a combination of query reformulation and classification techniques to identify corrective intents and present better search results to the user. The authors evaluate the effectiveness of the approach using a test collection of queries and find that it significantly improves the quality of search results compared to baseline methods."},{"title":"Optimization of Search Engine for Better Performance","link":"https://link.springer.com/chapter/10.1007/978-981-10-1627-3_71","summary":"This paper presents a study on the optimization of search engines for better performance. The authors propose several techniques to improve the efficiency and effectiveness of search engine algorithms, including query optimization, index optimization, and result ranking. The effectiveness of these techniques is evaluated using a test collection of queries and the results show significant improvements in search engine performance. The authors also discuss the limitations of their approach and suggest future research directions."},{"title":"Optimization of Web search engine results by automated identification and classification of corrective search intents","link":"https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.23807","summary":"The article presents an algorithmic approach to optimize Web search engine results. The authors propose an automated method for identifying and classifying corrective search intents, which are queries that reflect a user's dissatisfaction with initial search results. The algorithm uses a combination of query reformulation and classification techniques to identify corrective intents and present better search results to the user. The authors evaluate the effectiveness of the approach using a test collection of queries and find that it significantly improves the quality of search results compared to baseline methods."},{"title":"Search Algorithms and Optimization Techniques","link":"https://ieeexplore.ieee.org/abstract/document/912790","summary":"A survey on search algorithms and optimization techniques. Recent progress in search technology and optimization methodology has provided a strong impetus for further investigation of this area. This paper provides a survey of work on search algorithms and optimization techniques, with an emphasis on their application to engineering design and analysis problems. Topics covered include: search and optimization in engineering; optimization methods and strategies; heuristic and stochastic search algorithms; optimization software and tools; application of search and optimization techniques."},{"title":"Optimization of Search Engine for Better Performance","link":"https://link.springer.com/chapter/10.1007/978-981-10-1627-3_71","summary":"This paper presents a study on the optimization of search engines for better performance. The authors propose several techniques to improve the efficiency and effectiveness of search engine algorithms, including query optimization, index optimization, and result ranking. The effectiveness of these techniques is evaluated using a test collection of queries and the results show significant improvements in search engine performance. The authors also discuss the limitations of their approach and suggest future research directions."},{"title":"Optimization of Web search engine results by automated identification and classification of corrective search intents","link":"https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.23807","summary":"The article presents an algorithmic approach to optimize Web search engine results. The authors propose an automated method for identifying and classifying corrective search intents, which are queries that reflect a user's dissatisfaction with initial search results. The algorithm uses a combination of query reformulation and classification techniques to identify corrective intents and present better search results to the user. The authors evaluate the effectiveness of the approach using a test collection of queries and find that it significantly improves the quality of search results compared to baseline methods."},{"title":"Optimization of Search Engine for Better Performance","link":"https://link.springer.com/chapter/10.1007/978-981-10-1627-3_71","summary":"This paper presents a study on the optimization of search engines for better performance. The authors propose several techniques to improve the efficiency and effectiveness of search engine algorithms, including query optimization, index optimization, and result ranking. The effectiveness of these techniques is evaluated using a test collection of queries and the results show significant improvements in search engine performance. The authors also discuss the limitations of their approach and suggest future research directions."},{"title":"Search Algorithms and Optimization Techniques","link":"https://ieeexplore.ieee.org/abstract/document/912790","summary":"A survey on search algorithms and optimization techniques. Recent progress in search technology and optimization methodology has provided a strong impetus for further investigation of this area. This paper provides a survey of work on search algorithms and optimization techniques, with an emphasis on their application to engineering design and analysis problems. Topics covered include: search and optimization in engineering; optimization methods and strategies; heuristic and stochastic search algorithms; optimization software and tools; application of search and optimization techniques."},{"title":"Optimization of Search Engine for Better Performance","link":"https://link.springer.com/chapter/10.1007/978-981-10-1627-3_71","summary":"This paper presents a study on the optimization of search engines for better performance. The authors propose several techniques to improve the efficiency and effectiveness of search engine algorithms, including query optimization, index optimization, and result ranking. The effectiveness of these techniques is evaluated using a test collection of queries and the results show significant improvements in search engine performance. The authors also discuss the limitations of their approach and suggest future research directions."},{"title":"Optimization of Web search engine results by automated identification and classification of corrective search intents","link":"https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.23807","summary":"The article presents an algorithmic approach to optimize Web search engine results. The authors propose an automated method for identifying and classifying corrective search intents, which are queries that reflect a user's dissatisfaction with initial search results. The algorithm uses a combination of query reformulation and classification techniques to identify corrective intents and present better search results to the user. The authors evaluate the effectiveness of the approach using a test collection of queries and find that it significantly improves the quality of search results compared to baseline methods."},{"title":"Optimization of Search Engine for Better Performance","link":"https://link.springer.com/chapter/10.1007/978-981-10-1627-3_71","summary":"This paper presents a study on the optimization of search engines for better performance. The authors propose several techniques to improve the efficiency and effectiveness of search engine algorithms, including query optimization, index optimization, and result ranking. The effectiveness of these techniques is evaluated using a test collection of queries and the results show significant improvements in search engine performance. The authors also discuss the limitations of their approach and suggest future research directions."},{"title":"Optimization of Web search engine results by automated identification and classification of corrective search intents","link":"https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.23807","summary":"The article presents an algorithmic approach to optimize Web search engine results. The authors propose an automated method for identifying and classifying corrective search intents, which are queries that reflect a user's dissatisfaction with initial search results. The algorithm uses a combination of query reformulation and classification techniques to identify corrective intents and present better search results to the user. The authors evaluate the effectiveness of the approach using a test collection of queries and find that it significantly improves the quality of search results compared to baseline methods."},{"title":"Optimization of Search Engine for Better Performance","link":"https://link.springer.com/chapter/10.1007/978-981-10-1627-3_71","summary":"This paper presents a study on the optimization of search engines for better performance. The authors propose several techniques to improve the efficiency and effectiveness of search engine algorithms, including query optimization, index optimization, and result ranking. The effectiveness of these techniques is evaluated using a test collection of queries and the results show significant improvements in search engine performance. The authors also discuss the limitations of their approach and suggest future research directions."},{"title":"Optimization of Web search engine results by automated identification and classification of corrective search intents","link":"https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.23807","summary":"The article presents an algorithmic approach to optimize Web search engine results. The authors propose an automated method for identifying and classifying corrective search intents, which are queries that reflect a user's dissatisfaction with initial search results. The algorithm uses a combination of query reformulation and classification techniques to identify corrective intents and present better search results to the user. The authors evaluate the effectiveness of the approach using a test collection of queries and find that it significantly improves the quality of search results compared to baseline methods."},{"title":"Optimization of Search Engine for Better Performance","link":"https://link.springer.com/chapter/10.1007/978-981-10-1627-3_71","summary":"This paper presents a study on the optimization of search engines for better performance. The authors propose several techniques to improve the efficiency and effectiveness of search engine algorithms, including query optimization, index optimization, and result ranking. The effectiveness of these techniques is evaluated using a test collection of queries and the results show significant improvements in search engine performance. The authors also discuss the limitations of their approach and suggest future research directions."}],"totalCount":21,"url":"","type":"general"}